FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3.
نویسندگان
چکیده
Ataxin-3 (ATXN3), the disease protein in spinocerebellar ataxia type 3 (SCA3), binds to target gene promoters and modulates transcription by interaction with transcriptional regulators. Here, we show that ATXN3 interacts with the forkhead box O (FOXO) transcription factor FOXO4 and activates the FOXO4-dependent transcription of the manganese superoxide dismutase (SOD2) gene. Upon oxidative stress, ATXN3 and FOXO4 translocate to the nucleus, concomitantly bind to the SOD2 gene promoter and increase the expression of the antioxidant enzyme SOD2. Compared with normal ATXN3, mutant ATXN3 has a reduced capability to activate the FOXO4-mediated SOD2 expression and interferes with binding of FOXO4 to the SOD2 gene promoter. These findings are consistent with a downregulation of SOD2 in pontine brain tissue and lymphoblastoid cell (LC) lines of SCA3 patients. In response to oxidative stress, LCs from SCA3 patients show a specific impairment to upregulate SOD2 expression in correlation with a significantly increased formation of reactive oxygen species and cytotoxicity. The impairment to increase the expression of SOD2 under oxidative stress conditions is associated with a significantly reduced binding of FOXO4 to the SOD2 gene promoter in SCA3-LCs. Finally and consistent with a regulatory role of ATXN3 in SOD2 expression, knockdown of endogenous ATXN3 by RNA interference represses the expression of SOD2. These findings support that ATXN3 plays an important role in regulating the FOXO4-dependent antioxidant stress response via SOD2 and suggest that a decreased antioxidative capacity and increased susceptibility towards oxidative stress contributes to neuronal cell death in SCA3.
منابع مشابه
Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis?
Exposure to reduced activity induces skeletal muscle atrophy. Oxidative stress might contribute to muscle wasting via proteolysis activation. This study aimed to test two hypotheses in rats. First, supplementation of the antioxidant vitamin E, prior and during the phase of unloading, would partly counteract unloading-induced soleus muscle atrophy. Secondly, vitamin E supplementation would decre...
متن کاملFOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK.
Forkhead transcription factors of the FOXO class are negatively regulated by PKB/c-Akt in response to insulin/IGF signalling, and are involved in regulating cell cycle progression and cell death. Here we show that, in contrast to insulin signalling, low levels of oxidative stress generated by treatment with H2O2 induce the activation of FOXO4. Upon treatment of cells with H2O2, the small GTPase...
متن کاملChronopharmacological effects of growth hormone on the executive function and oxidative stress response in rats
Objective(s): to investigate the chronopharmacological effects of growth hormone on executive function and the oxidative stress response in rats. Materials and Methods: Fifty male Wistar rats (36-40 weeks old) had ad libitum access to water and food and were separated into four groups: diurnal control, nocturnal control, diurnal GH-treated, and nocturnal GH-treated animals. Levels of Cu, Zn sup...
متن کاملPeripheral Oxidative Stress Biomarkers in Spinocerebellar Ataxia Type 3/Machado–Joseph Disease
OBJECTIVES Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a polyglutamine disorder with no current disease-modifying treatment. Conformational changes in mutant ataxin-3 trigger different pathogenic cascades, including reactive oxygen species (ROS) generation; however, the clinical relevance of oxidative stress elements as peripheral biomarkers of SCA3/MJD remains unknown. W...
متن کاملRole of Oxidative Stress, ER Stress and Ubiquitin Proteasome System in Neurodegeneration
NDD: Neurodegenerative Disorders; ER: Endoplasmic Reticulum; UPS: Ubiquitin Proteasome System; ROS: Reactive Oxygen Species; AD: Alzheimer’s Disease; PD: Parkinson’s Disease; MS: Multiple Sclerosis; HD: Huntington’s Disease; ALS: Amyotrophic Lateral Sclerosis; PS: Presenilin; APP: Amyloid beta (A4) Precursor Protein; MARK1: Microtubule Affinity-Regulating Kinase 1; SOD-1: Superoxide Dismutase 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 20 15 شماره
صفحات -
تاریخ انتشار 2011